Set_Map/Linux/RBTree.hpp

740 lines
23 KiB
C++
Raw Normal View History

#pragma once
#include <iostream>
namespace Lenyiin
{
enum Colour
{
RED,
BLACK
};
template <class T>
struct RBTreeNode
{
RBTreeNode<T> *_left; // 左子节点
RBTreeNode<T> *_right; // 右子节点
RBTreeNode<T> *_parent; // 父节点
T _data; // 节点存储的数据
Colour _colour; // 节点的颜色(红色或黑色)
// 节点的构造函数,默认为红色节点
RBTreeNode(const T &data)
: _left(nullptr), _right(nullptr), _parent(nullptr), _data(data), _colour(RED)
{
}
};
template <class T, class Ref, class Ptr>
struct __TreeIterator
{
typedef RBTreeNode<T> Node;
typedef __TreeIterator<T, Ref, Ptr> Self;
Node *_node; // 当前迭代器指向的节点
// 构造函数
__TreeIterator(Node *node)
: _node(node)
{
}
// 解引用操作符
Ref operator*()
{
return _node->_data;
}
// 访问成员操作符
Ptr operator->()
{
return &_node->_data;
}
// 前置递增运算符
Self &operator++()
{
// 1. 如果右不为空, 中序的下一个就是右子树的最左节点
if (_node->_right)
{
Node *subLeft = _node->_right;
while (subLeft->_left)
{
subLeft = subLeft->_left;
}
_node = subLeft;
}
// 2. 如果右为空, 表示 _node 所在的子树已经完成, 下一个节点在他祖先中去找, 沿着路径往上找孩子使它的左的那个祖先
else
{
Node *cur = _node;
Node *parent = cur->_parent;
while (parent && cur == parent->_right)
{
cur = parent;
parent = cur->_parent;
}
_node = parent;
}
return *this;
}
// 后置递增运算符
Self operator++(int)
{
Node *tmp = _node;
++(*this);
return Self(tmp);
}
// 前置递减运算符
Self &operator--()
{
// 1. 如果左不为空, 中序的上一个就是左树的最右节点
if (_node->_left)
{
Node *subRight = _node->left;
while (subRight->_right)
{
subRight = subRight->_right;
}
_node = subRight;
}
// 2. 如果左为空, 表示 _node 所在的子树已经完成, 上一个节点在他祖先中去找, 沿着路径往上找孩子是它的右的那个祖先
else
{
Node *cur = _node;
Node *parent = cur->_parent;
while (parent && cur == parent->_left)
{
cur = parent;
parent = cur->_parent;
}
_node = parent;
}
return *this;
}
// 后置递减运算符
Self operator--(int)
{
Node *tmp = _node;
--(*this);
return Self(tmp);
}
bool operator!=(const Self &n)
{
return _node != n._node;
}
bool operator==(const Self &n)
{
return _node == n._node;
}
};
template <class K, class T, class KOfT>
class RBTree
{
private:
typedef RBTreeNode<T> Node;
// 左单旋
void RotateL(Node *parent)
{
Node *ppNode = parent->_parent;
Node *subR = parent->_right;
Node *subRL = subR->_left;
parent->_right = subRL;
if (subRL)
{
subRL->_parent = parent;
}
subR->_left = parent;
parent->_parent = subR;
// 1. 原来 parent 是这棵树的根, 现在 subR 是根
if (_root == parent)
{
_root = subR;
subR->_parent = nullptr;
}
// 2. parent 为根的树只是整棵树中的子树, 改变链接关系, 那么 subR 要顶替他的位置
else
{
if (ppNode->_left == parent)
{
ppNode->_left = subR;
}
else
{
ppNode->_right = subR;
}
subR->_parent = ppNode;
}
}
// 右单旋
void RotateR(Node *parent)
{
Node *ppNode = parent->_parent;
Node *subL = parent->_left;
Node *subLR = subL->_right;
parent->_left = subLR;
if (subLR)
{
subLR->_parent = parent;
}
subL->_right = parent;
parent->_parent = subL;
if (_root == parent)
{
_root = subL;
subL->_parent = nullptr;
}
else
{
if (ppNode->_left == parent)
{
ppNode->_left = subL;
}
else
{
ppNode->_right = subL;
}
subL->_parent = ppNode;
}
}
// 删除整个红黑树
void DeleteTree(Node *root)
{
if (root == nullptr)
{
return;
}
// 递归删除左子树
DeleteTree(root->_left);
// 递归删除右子树
DeleteTree(root->_right);
// 删除当前节点
delete root;
}
public:
typedef __TreeIterator<T, T &, T *> iterator;
typedef __TreeIterator<T, const T &, const T *> const_iterator;
iterator begin()
{
Node *cur = _root;
while (cur && cur->_left)
{
cur = cur->_left;
}
return iterator(cur);
}
iterator end()
{
return iterator(nullptr);
}
const_iterator begin() const
{
Node *cur = _root;
while (cur && cur->_left)
{
cur = cur->_left;
}
return const_iterator(cur);
}
const_iterator end() const
{
return const_iterator(nullptr);
}
RBTree(Node *root = nullptr)
: _root(root)
{
}
~RBTree()
{
DeleteTree(_root);
}
// 插入
// 1. 空树。插入结点做根,把他变黑。
// 2. 插入红色节点,他的父亲是黑色的,结束。
// 3. 插入红色节点,他的父亲是红色的,可以推断他的祖父存在且一定为黑色。关键看叔叔
// a. 如果叔叔存在且为红,把父亲和叔叔变黑,祖父变红,继续往上处理。
// b. 如果叔叔存在且为黑,或者不存在。旋转(单旋 or 双旋)+ 变色
std::pair<iterator, bool> Insert(const T &data)
{
// 按照搜索树的规则进行插入
// 如果树为空,新节点直接作为根节点
if (_root == nullptr)
{
_root = new Node(data);
_root->_colour = BLACK; // 根节点是黑色的
return std::make_pair(iterator(_root), true);
}
// 插入时使用比较器来比较键的大小,以支持不同的数据类型
KOfT koft;
Node *parent = nullptr;
Node *cur = _root;
while (cur)
{
if (koft(cur->_data) > koft(data))
{
parent = cur;
cur = cur->_left;
}
else if (koft(cur->_data) < koft(data))
{
parent = cur;
cur = cur->_right;
}
else
{
// 如果键已经存在, 插入无效, 返回 false, 并且返回该键的迭代器
return std::make_pair(iterator(cur), false);
}
}
// 找到位置, 根据父节点插入新节点
cur = new Node(data);
Node *newnode = cur;
if (koft(parent->_data) > koft(cur->_data))
{
parent->_left = cur;
cur->_parent = parent;
}
else
{
parent->_right = cur;
cur->_parent = parent;
}
// 插入后需要修复红黑树的性质
InsertFixUp(parent, cur);
return std::make_pair(iterator(newnode), true);
}
void InsertFixUp(Node *parent, Node *cur)
{
// 调整结点颜色
// 新结点给红的还是黑的? 红色
// 1. 空树。插入结点做根, 把他变黑。
// 2. 插入红色节点, 他的父亲是黑色的, 结束。
// 3. 插入红色节点, 他的父亲是红色的, 可以推断他的祖父存在且一定为黑色。关键看叔叔
// a. 如果叔叔存在且为红, 把父亲和叔叔变黑, 祖父变红, 继续往上处理。
// b. 如果叔叔存在且为黑, 或者不存在。旋转(单旋 or 双旋)+ 变色
while (parent && parent->_colour == RED)
{
// 关键看叔叔
Node *grandfather = parent->_parent;
// 父节点是祖父节点的左子节点
if (grandfather->_left == parent)
{
Node *uncle = grandfather->_right;
// 情况1: uncle 存在, 且为红
if (uncle && uncle->_colour == RED)
{
parent->_colour = uncle->_colour = BLACK;
grandfather->_colour = RED;
// 继续向上处理
cur = grandfather;
parent = cur->_parent;
}
// 情况 2 or 情况 3 : uncle 不存在 or uncle 存在且为黑
else
{
// 情况 3 : 双旋 -> 变单旋
if (cur == parent->_right)
{
RotateL(parent);
std::swap(parent, cur);
}
// 第二种情况 (ps: 有可能是第三种情况变过来的)
RotateR(grandfather);
grandfather->_colour = RED;
parent->_colour = BLACK;
break;
}
}
// 父节点是祖父节点的右子节点
else
{
Node *uncle = grandfather->_left;
// 情况1: uncle 存在, 且为红
if (uncle && uncle->_colour == RED)
{
parent->_colour = uncle->_colour = BLACK;
grandfather->_colour = RED;
// 继续向上调整
cur = grandfather;
parent = cur->_parent;
}
// 情况 2 or 情况 3 : uncle 不存在 or uncle 存在且为黑
else
{
// 情况 3 : 双旋 -> 变单旋
if (cur == parent->_left)
{
RotateR(parent);
std::swap(parent, cur);
}
// 第二种情况 (ps: 有可能是第三种情况变过来的)
RotateL(grandfather);
grandfather->_colour = RED;
parent->_colour = BLACK;
break;
}
}
}
// 保证根节点为黑
_root->_colour = BLACK;
}
// 删除操作
bool Erase(const K &key)
{
Node *nodeToDelete = _root;
KOfT koft;
// 1. 寻找要删除的节点
while (nodeToDelete)
{
if (koft(nodeToDelete->_data) > key)
{
nodeToDelete = nodeToDelete->_left;
}
else if (koft(nodeToDelete->_data) < key)
{
nodeToDelete = nodeToDelete->_right;
}
else
{
break; // 找到了要删除的节点
}
}
// 节点若不存在, 直接返回 false
if (nodeToDelete == nullptr)
{
return false;
}
// 执行删除操作
Node *parent, *child;
// 保存原节点的颜色,以便后续调整
Colour originalColour = nodeToDelete->_colour;
// 2. 处理删除节点的各种情况
if (nodeToDelete->_left == nullptr)
{
// 情况 1没有左子节点
child = nodeToDelete->_right;
parent = nodeToDelete->_parent;
Transplant(nodeToDelete, nodeToDelete->_right);
}
else if (nodeToDelete->_right == nullptr)
{
// 情况 2没有右子节点
child = nodeToDelete->_left;
parent = nodeToDelete->_parent;
Transplant(nodeToDelete, nodeToDelete->_left);
}
else
{
// 情况 3有两个子节点
// 找到右子树中的最小节点(后继节点)
Node *successor = Minimum(nodeToDelete->_right);
originalColour = successor->_colour;
child = successor->_right;
if (successor->_parent == nodeToDelete)
{
parent = successor;
}
else
{
// 后继节点有右子节点,用它的右子节点替换它
Transplant(successor, successor->_right);
successor->_right = nodeToDelete->_right;
successor->_right->_parent = successor;
parent = successor->_parent;
}
// 用后继节点替换删除节点
Transplant(nodeToDelete, successor);
successor->_left = nodeToDelete->_left;
successor->_left->_parent = successor;
successor->_colour = nodeToDelete->_colour; // 保持颜色不变
}
// 删除节点
delete nodeToDelete;
// 3. 修复红黑树的性质
// 如果删除的节点是黑色, 需要进行调整
if (originalColour == BLACK)
{
EraseFixUp(child, parent);
}
return true;
}
Node *Minimum(Node *node)
{
while (node->_left != nullptr)
{
node = node->_left; // 一直向左走,直到找到最左节点
}
return node;
}
void Transplant(Node *u, Node *v)
{
// 如果u是根节点v成为新的根节点
if (u->_parent == nullptr)
{
_root = v;
}
// u是左子节点用v替换它
else if (u == u->_parent->_left)
{
u->_parent->_left = v;
}
// u是右子节点用v替换它
else
{
u->_parent->_right = v;
}
// 连接v与u的父节点
if (v != nullptr)
{
v->_parent = u->_parent;
}
}
void EraseFixUp(Node *child, Node *parent)
{
while (child != _root && (child == nullptr || child->_colour == BLACK))
{
if (child == parent->_left)
{
Node *brother = parent->_right;
// 情况1: child 的兄弟节点 brother 是红色的
if (brother->_colour == RED)
{
brother->_colour = BLACK;
parent->_colour = RED;
RotateL(parent);
brother = parent->_right;
}
// 情况2: child 的兄弟节点 brother 是黑色的, 且 brother 的两个节点都是黑色的
if ((brother->_left == nullptr || brother->_left->_colour == BLACK) &&
(brother->_right == nullptr || brother->_right->_colour == BLACK))
{
brother->_colour = RED;
child = parent;
parent = child->_parent;
}
else
{
// 情况3: brother 是黑色的, 并且 brother 的左子节点是红色, 右子节点是黑色
if (brother->_right == nullptr || brother->_right->_colour == BLACK)
{
if (brother->_left)
{
brother->_left->_colour = BLACK;
}
brother->_colour = RED;
RotateR(brother);
brother = parent->_right;
}
// 情况4: brother 是黑色的, 并且 brother 的右子节点是红色
if (brother)
{
brother->_colour = parent->_colour;
parent->_colour = BLACK;
if (brother->_right)
{
brother->_right->_colour = BLACK;
}
RotateL(parent);
}
child = _root;
break;
}
}
else
{
Node *brother = parent->_left;
// 情况1: child 的兄弟节点 brother 是红色的
if (brother->_colour == RED)
{
brother->_colour = BLACK;
parent->_colour = RED;
RotateR(parent);
brother = parent->_left;
}
// 情况2: child 的兄弟节点 parent 是黑色的, 且 brother 的两个节点都是黑色的
if ((brother->_left == nullptr || brother->_left->_colour == BLACK) &&
(brother->_right == nullptr || brother->_right->_colour == BLACK))
{
brother->_colour = RED;
child = parent;
parent = child->_parent;
}
else
{
// 情况3: brother 是黑色的, 并且 brother 的右子节点是红色, 左子节点是黑色
if (brother->_left == nullptr || brother->_left->_colour == BLACK)
{
if (brother->_right)
{
brother->_right->_colour = BLACK;
}
brother->_colour = RED;
RotateL(brother);
brother = parent->_left;
}
// 情况4: brother 是黑色的, 并且 brother 的左子节点是红色
if (brother)
{
brother->_colour = parent->_colour;
parent->_colour = BLACK;
if (brother->_left)
{
brother->_left->_colour = BLACK;
}
RotateR(parent);
}
child = _root;
break;
}
}
}
if (child)
{
child->_colour = BLACK;
}
}
// 查找节点
iterator &Find(const K &key)
{
KOfT koft;
Node *cur = _root;
while (cur)
{
if (koft(cur->_data) > key)
{
cur = cur->_left;
}
else if (koft(cur->_data) < key)
{
cur = cur->_right;
}
else
{
return iterator(cur);
}
}
return iterator(nullptr);
}
// 判断是否是红黑树
bool IsRBTree()
{
Node *root = _root;
// 空树也是红黑树
if (root == nullptr)
{
return true;
}
// 1. 判断跟是否是黑色的
if (root->_colour != BLACK)
{
std::cout << "根节点不是黑色" << std::endl;
return false;
}
// 获取任意一条路径上黑色节点的数量
size_t blackCount = 0;
Node *cur = _root;
while (cur)
{
if (cur->_colour == BLACK)
{
blackCount++;
}
cur = cur->_left;
}
// 判断是否满足红黑树的性质, k 用来记录路径中黑色节点的个数
size_t k = 0;
return _IsRBTree(_root, k, blackCount);
}
bool _IsRBTree(Node *root, size_t k, size_t blackCount)
{
// 走到 nullptr 之后, 判断 k 和 blackCount 是否相等
if (root == nullptr)
{
// 最终黑色节点个数
if (blackCount != k)
{
std::cout << "违反性质四: 每条路径中黑色节点的个数必须相等" << std::endl;
return false;
}
return true;
}
// 统计黑色节点个数
if (root->_colour == BLACK)
{
k++;
}
// 检测当前节点与其父亲节点是否都为红色
Node *parent = root->_parent;
if (parent && parent->_colour == RED && root->_colour == RED)
{
std::cout << "违反了性质三: 红色节点的孩子必须是黑色" << std::endl;
return false;
}
return _IsRBTree(root->_left, k, blackCount) && _IsRBTree(root->_right, k, blackCount);
}
private:
Node *_root;
};
}